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ABSTRACT

A "pooling sets" type of algorithm is developed and shown to

be valid for computing an isotonic regression function for a gen-

eral quasi-order. The method is direct and intuitive. The algo-

rithm works best when the quasi-order is complex and the objective

function is nearly isotonic. An example is worked out in detail.

Key Words: Isotonic regression, quasi-order, minimal violator,

maximal violatee, least squares, pooling algorithm.
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1. Introduction.

Consider X to be a finite set which we denote as

X = {Xl, x2 1 .... x }. Let < be a binary relation on X which is a

quasi-order, i.e. < is reflexive and transitive, (see Barlow,

Bartholomew, Bremner, and Brunk (1972) p.24). We say a real-

valued function f(.) defined on X is isotonic with respect to

"<" if x < y implies f(x) < f(y). A problem that arises in many

different contexts is the following: For a given positive function

w(x), called the weight function, and an arbitrary function g(x),

find that function g*(x) on X which is isotonic with respect to a

particular quasi-order "<" and minimizes

m 2
S(g(xi - h(x i)) w(x i )i=l

over all isotonic functions h(x). This is referred to as the iso-

tonic regression problem. Much of the importance of this problem

hinges on the fact that is solves many seemingly very different

optimization problems (see Barlow et.al. (1972) and Barlow and

Brunk (1972)).

This is of course a quadratic programming problem with spe-

cial types of linear constraints. In certain cases, the solution

is well known and easily computed.

i) Simple ordering case. When "<" is also a simple ordering

(reflexive, transitive, anti-symmetric, and each pair of elements

is comparable), the problem is greatly simplified. One of the

more common situations is when X consists of real numbers and "<"

is the usual ordering of the real numbers. In this case, a func-

tion is isotonic iff it is nondecreasing. In this situation,
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g*(x) ca:i be effected in the following way: Reduce the problem to

fewer dimensioas by pooling adjacent points where reversals occur.

That is, choose xix. such that x. < x., g(x.) > g(x.), and there

does not exist y such that x.< y < x. (if no such pair exists,
S - 3

then g(x) - g*(x)). Now consider the same problem where x. and

x. are considered as one point with weight w(xi) + w(x.), func-

tional value

g((x i , x.}) = [g(xi)w(x i + g(x)w (x) [w(x i ) + w(x.)]

and the natural ordering (xi,x }  x if x x xk and x k Xx j }
1 l fJkifx k-f i

if x < x.. This reduction process is continued until a function
1

is obtained with no reversals. Then g*(x) = g(x) if x is one

of the points making up the pool x. This is the -Pool Adjacent

Violators Algorithm" first discussed by Ayer et.al. (1955).

ii) Rooted trees. A more general class of partial orderings that

is important in some problems involves the concept of rooted trees.

In a rooted tree, except for a single element, the root, which has

no predecessor, each element has exactly one immediate predecessor.

(We say x. is an immediate predecessor of xi if x. < xi and there

does not exist an element y such that x. < y < xi).

Thompson (1962) has shown that the previous scheme used for

the simple ordering case works providing the poolings are taken

in the correct order. To be more precise, if there exists an

immediate predecessor to xi, say x. such that g(x.) > g(xi), call

the point xi a violator (of xj) and call xj a violatee (of xi).

A violator x. is a minimum violator if there does not exist a violator1

x. such that g(x ) < g(xi). Thompson showed that if one pools a

minimum violator to its violatee (there exists only one in the
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rooted tree case , redefines the partial order in the natural way,

and continues as in the case of simple ordering, that one must even-

tually arrive at g*(x). This is often called the "Minimal Violator

Algori=hm".

iii) Partial ordering case. For general partial orders, the so-

lutions become less tractable. A closed form expression for g*

described in Brunk (1955) involves the use of upper and lower sets.

a) A c X is an upper set if x.eA and x < x. implies x cA.

b) A a X is a lower set if x .A and x < x. implies x .A.

If we let U = (A; A is an upper set}, L = (A; A is a lower set',

and for any A = X

g(t)w(t)t_ A
Av(A) =

Z w(t)
tPA

then

g*Cx) = max min Av(A n B). (1.1)
AcU BeL

xcAnB

Based on this expression for g*(x), there exists a simple algorithm

(Minimum Lower Sets Algorithm) stated in Brunk, Ewing, Utz (1957)

for computing g*. To use this algorithm, first find L1 L such that

Av(L1 ) is minimal. Then for xLl, g*(x) - Av(LI ). Next find L2cL

such that Av(L2 - L ) is minimal. Then for xEL 2 - LI , g*(x) =

Av(L2 - L1 ), etc. This is repeated until jL. = X and g* is com-

pletely determined.

This algorithm is straightforward and direct, but does have

some shortcomings.

1) The class of all lower sets may be difficult to determine
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and enumerate and/or excessively large. For example, in the

natural partial ordering for the grid X = ((i,j); i= 1,...,a,

j = l....,b} defined by

(i,j) < (k,Z) iff i < k andj <Z,

it can be shown by combinatorial techniques that there are

ab) lower sets. This number becomes very large as a and ban

become large.

2) Computing the many averages Av(L) for all lower sets may

involve a large amount of effort.

3) If g is nearly isotonic (very few reversals), as much

work (in fact usually more because the Li, L2, etc. are small

and hence more minimums must be compared) is required as if

g is far from isotonic.

For these reasons, a scheme similar to the pooling algorithm of

Thompson for the rooted tree case would be desirable. Since an

arbitrary quasi-ordering allows a great deal more diversity than

the rooted tree situation, it is not surprising that the general

quasi-order algorithm is more complicated than for the rooted tree

case. As in Thompson's algorithm, poolings are again formed with

the idea of reducing the dimension of the problem. However, in

this case, we must also form temporary or "working" pools which

may be dissolved later in the algorithm.

After the pooling, our new problem is defined in the natural

way. That is, if the points x and y are pooled, then {x,y} is

treated as one point with weight w(x) + w(y) and functional valve

Av(tx,y). The ordering is preserved naturally; i.e. tx,y} < z if
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x < z or y < z and z < 'x,y} if z < x or z < y.

We remark that poolingsare to be made only between violators

and their immediate predecessors.

2. Justification of Algorithm.

Since the algorithm works by pooling points together, we need

some criterion which will justify using the pooling mechanism.

Lemma 2.1 is basic to the algorithm. Lemma 2.1 is similar to The-

orem 2.5 of Barlow et.al. (1972) except we need not assume that x1

and x2 are "poolable".

" Lemma 2.1. If g* denotes the solution to an isotonic regression

problem and g denotes the solution to the isotonic regression prob-

lem where xI and x2 are pooled to form y (see section 1 for details

of the pooling), then providing g*(x1 ) - g*(x 2) , g and g* agree

in the sense that g*(x) = g(x) , x # xlX 2 and g*(x I ) -g*(x 2 ) =g(y).

Proof. Suppose h is a function defined on X such that

h(x1 ) = h(x2 ) = c and h' is a function such that h' (x) = h(x) ,

x # y , and h' (y) = c Note first that h is isotonic on X iff

h' is isotonic for the pooled problem. Then the sum of terms in

m 2
E (g(xi) -h(xi) w(xi) (2.1)

i=l

which involve x and x2 are

',qx1 -c 2w~ + (q(x )-c) 2w~

2
,Av(-,xl,X'.2)-c)2(W(xl) + w(x2)) + '(Xifx 2

.. . .-1_ . .
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where t does not depend upon c. Since the value of c that mini-

mizes the left side also minimizes the right side, the assumption

that g*(x 1 ) = g*(x 2 ) implies the desired result.

Thus if we have points x1 and x such that xI < x2 and x2 < x

we know that we may pool xI and x2 and consider the pooled problem.

An algorithm due to Von Eeden (see Barlow et.al (1972), page 90)

is of interest to us. In this scheme, order restrictions are num-

bered sequentially, say 0l, 002,...,0 . Let g* denote the solution

to the smaller problem consisting of only the first k constraints.

Then consider the k+lst constraint, say h(xi) < h(x.). If

g*(x i ) < g*(x. , * = g* otherwise, g* ixi) = g i,(x), which

effectively reduces the problem of finding g*+l to one involving

only k constraints. By induction, one can obtain g* by using the

above result. The problem lies in the inefficiency of the method,

since any pooling may be later broken up. with the observation

that the minimal violator always stays pooled, we may greatly im-

prove upon this scheme for the isotone regression problem.

If A c X, g(x) IA will denote g restricted to A. We can also

consider our isotonic regression problem scaled down to A. That

is, for xi , x.EA, xi < x.(in A)iff x. ~ x(in X). We will denote

the solution of our restricted problem by g*. Of course g*1 A is

the overall solution restricted to A. We assume that < is a par-

tial order in the following three lemmas.

Lemma 2.2. If L is a lower set, then g* > g*> L

Proof. Note first that the upper and lower sets of our restricted

problems are respectively

2L = .AnL; A is an upper set}, and

LL = BnL; B is a lower set}.
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Thus, from (1. 1)

g*(x) max min Av(A B')
L A'UL B':L L

XEA' B"

= max min Av(A n B n L)
AeU BEL

xzA i B

> max min Av(A n B)

AeU BEL

xCA n B

Sg*(x)IL

since BEL B n LeL and hence L contains at least as many sets as LL

A lemma somewhat similar to lemma 2.2 which we shall need is the

following one.

Lemma 2.3. If A* n B* c C = A1 n B1 where A* and A1 are upper sets,

B* and B1 are lower sets, and Lor all xEA* n B*, g*(x) - Av(A* n B*),

then g*(x) = g*(x) = Av(A* n B*) for x EA* n B*.

Proof. For xEA* n B* we can write

g*(x) = max min Av(A n B A 1BI)AeU BEiI

xe:A 1 B

Z max min Av(A 1 A1 1 B)
AeU BEL

.EA B

= g*(x), since A* = A* 1 A1 .
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Similarly,

g*(x) = min max Av(A 1B A1  B1 )BEL AeU

xEA B

<min max Av(A B 'B)
BEL AeU

xEA B

= g*(x), since B* B* - B1 .

from which the conclusion follows.

Note that this laxmna implies that if for any set B,

A =g*-l(B), then g*(x)IA gC(x). We will also need lemma 2.4.

Lemma 2.4. If m1 is a minimal violator in X, g*(m 1) = g*(v) for

some immediate predecessor v of mI (i.e., m1 can be pooled with one

of its immediate predecessors.

Proof: Assume g*(m1 ) > g*(v) for all immediate predecessors v of

m1 . Thus if we omit all restraints of the form h(x) < h(m), the

reduced problem still admits the solution g*. Let

B = (x; g(x) < g(m I )} u {mI }

Since g(x) > g(m1 ) for all x E B , we must have g*(x) > g(m) (see
B

Brunk (1965)). Thus if we define

'g(x) a (x) , xE3
q (x) , XcB,

a(x) is isotonic for the reduced problem. To see this, note that
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for the original problem, there can be no violators in B save

mI since mI is a minimal violator, and hence, for the reduced

problem, there are no violators in B. No point in B can be a

violatee, since the corresponding violator would have to be in

and g* > g(m > g(z) , zFB. Thus g satisfies all restrictions
B

involving at least one element of B and, from its definition,

clearly satisfies all restrictions involving elememts both in B.

However, by Van Eeden's algorithm (see first part of this sec-

tion), g = g*, which is a contradiction, since a violatee v of

mI belongs to B and thus g*(v) = g*(v) < g*(m I) = g(ml).
B

Thus the minimal violator must be permanently pooled with

at least one of its immediate predecessors. The following the-

orem answers the question of "Which one?" and serves as the basis

of our algorithm for computing g*. For any point x, we define the

particular lower set L(m1 ) as being the complement of {y; x < y}

Theorem 2.1. If mI is a minimal violator and v1 the maximal
immediate predecessor of mI with respect to g( U.e.

g*(m 1) (v) > g( (v) for all other immediate predecessors

v of ml), then g*(ml) = g*(v).

Proof. Assume g*(ml) > g*(vI). From lemma 2.4, there must exist

some immediate predecessor of mi, say v, such that

g*(Mi) = g*(v). (2.2)

Noting that :x;g*(x)=g*(v1 )}L~in), it follows from Lemma 2.3, that

g*(v l ) = (in) (v ) (2.3)
L(M
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By definition,

g* (v > g ) (v) (2.4)
L(ml) I (m

Finally, Lemma 2.2 implies

gL(fl ) Cv) > g*(v) . (2.5)

Combining (2.3), (2.4), (2.5) and (2.2), we have

g*(v l) = g* (V > g* (v) > g*(v) g*(m ) ,
1 L(.M) L(m)

which is a contradiction.

3. The Algorithm.

Lemma 2.1 and Theorem 2.1 suggest a pooling algorithm for

obtaining the solution to an isotane regression problem with a

general quasi-ordering. That is first reduce the quasi-ordering

problem to a partial ordering problem by sequentially pooling

points x and y where x < y and y < x and redefining the ordering

until all such pairs are coalesced.

If one can solve the partial ordering problem in n

dimensions and is confronted with such a problem in n + 1 di-

mensions, he has only to locate a minimal violator mi, solve the

restricted problem over L(m1 ) and pool m1 with the resulting maxi-

mal immediate predecessor (with respect to g . This reduces

the problem to n dimensions which can be handled by assumption.

Actually the scheme becomes much more tractable when one realizes

that one does not have to begin all over again for all lower points

after a pooling is made. Lemma 2.3 and Lemma 3.1 are particularly

iseful in this regard.
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Lemma 3.1. If A and B are disjoint and if

4Wx =the g* W (x) if:_

then g CBx) = (x) if g is isotonic over the set A u B.

Proof. The proof is obvious by writing the sum to be minimized

as the sum over A plus the sum over B.

We note from Lemma 2.3 that if v is the maximal immediate

predecessor of m under g() , and if

A = (yeL(m) : (y) g g( (v)}

t-hen g (m)(x) = g(x) for all xEA. By using this fact with lemma 3.1,
it is often easy to construct g* for the next minimal violator m.

Of course one can also describe the algorithm by first finding

maximal violatees, and then pooling these to their (restricted)

minimal violators. For large sets, a combination of the two ap-

proaches is sometimes useful.

4. An Example.

Consider the sixteen points in the plane

X ( (i, J); i,j = 1, 2, 3, 4} with the usual planar ordering

(i, j) < (h, k) iff i < h and j L k. Assume all weights are

equal to one and that

g(i,j)

4 .1 2 7 6

3 .1 6 3 6

2 5.2 0 5.2 5.5

1 1 5 3 4

1 2 3 4
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Since the minimal violator is (2,2) and

(2,2)

4 1.8

3 1.8

2 1.8:

1 1 4 4 4

I I i

1 2 3 4

i

we know that (2,2) and (2,1) may be pooled to yield

4 1.8 2 7 6

3 1.8 6 5 6

2 1.8 (2.51 5.2 5.5

1 14

1 2 3 4
i

Now (2,4) is the new minimal violator and it is easily shown that

g*,L(2,4),

4 1.8

3 1.8 5.5 5.5 6

2 1.8 (2.5 5 5.2 5.5
1 1 3 4

1 2 3 4
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Thus we pool (2,4) with (2,3) to obtain

4 1.8 ' \ 7 64;
3 1.8 ' ' 5 6
2 1.8 ' . 5.2 5.5 (4.1)

1 1 " 3 4

1 2 3 4

i

Now, (3,3) is the new minimal violator with g (33) as

given in expression (4.1). Pooling (3,3) with (3,2), we then

have (4,4) as the minimal (only) violator. Pooling (4,4) with

(3,4) we have as the final solution

L(i,j)

4 1.8 4 6.5 6.5

3 1.8 4 5.1 6

2 1.8 2.5 5.1 5.5

1 1 2.5 3 4

1 2
1 2 3 4

i
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